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Viscous shear flow past small bluff bodies 
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Numerical solutions of the Navier-Stokes equations are presented for two- 
dimensional viscous flow past semicircular and semielliptical projections attached 
to a plane wall on which a laminar boundary layer has developed. Since the major 
axis is in the direction normal to the wall and is chosen to be twenty times as long 
as the minor axis in the present case, the flow around the semielliptical projection 
will approximately correspond to that around a normal flat plate. It is assumed 
that the height of each obst,acle is so small in comparison with the local boundary- 
layer thickness that the approaching flow can be approximated by a uniform 
shear flow. Numerical solutions are obtained for the range 0.1-1 OOof the Reynolds 
number, which is defined in terms of the undisturbed approaching velocity at the 
top of the obstacle and its height. The geometrical shapes of the front and rear 
standing vortices, the drag coefficients and the pressure and shear-stress distribu- 
tions are presented as functions of the Reynolds number. The computed results 
are discussed in connexion with the data already obtained in the other theoretical 
solutions and an experimental observation. 

1. Introduction 
An understanding of the flow around a bluff body attached to a plane wall is 

of practical importance in connexion with such diverse applications as the effect 
of a single roughness element on laminar boundary-layer transition or flow over 
an isolated hill or man-made structures on the ground. Most of these flows are 
three-dimensional and much too complicated to be accurately measured or 
theoretically analysed. Therefore, most of the investigations have been limited to 
two-dimensional cases, including normal or inclined flat plates (Good & Joubert 
1968; Ranga Raju & Garde 1970), rectangular cylinders of various aspect ratios 
(Arie et al. 1975) and obstacles of the other shapes (Plate & Lin 1965; Kiya & Arie 
1972), all being placed in turbulent boundary layers. Sedney (1973) has sum- 
marized the investigations of flow around small protuberances and their effects 
on boundary-layer flows. 

Although most of the boundary layers of practical interest in which a body is 
immersed may be turbulent, the flow over a two-dimensional body in a laminar 
boundary layer is nevertheless important because of its association with the 
effects of a single two-dimensional roughness element on laminar boundary-layer 
transition, or the characteristics of the sublayer fence used to measure surface 
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shear stress. Furthermore, apart from these applications, this flow deserves 
attention in its own right as one of the fundamental problems in fluid dynamics. 
Tani & Sato (1956) and Klebanoff & Tidstrom (1 972) reported measurements of 
velocity profiles around a two-dimensional isolated roughness element in the 
course of their studies of laminar boundary-layer transition due to a roughness 
element. Hunt (1971) considered theoretically the laminar far wake downstream 
of a cylindrical body on a plane wall, assuming that the height of the body was 
much smaller than the thickness of the boundary layer a t  the location of the body. 
The same kind of problem was considered by Smith ( I  973) by means of a different 
mathematical approach. Since their analyses employ a boundary-layer type of 
approximation, details of the flow around the body cannot be clarified by their 
methods. 

Flow patterns around a body attached to a solid surface were obtained 
numerically by Dumitrescu, Cazacu & Craciun (1964) and Mills (1968) for the 
case of square-edged orifice plates installed respectively in a parallel-sided channel 
and a circular pipe by assuming a parabolic velocity profile for the approaching 
flow. Since the height of the orifice plate was taken to be 0.4 or 0.5 times the half- 
width of the channel or the radius of the pipe in their cases, the unbounded flow 
over a flat plate normal to a solid wall cannot be inferred from their solutions. 

The present paper describes numerical solutions of the Navier-Stokes equations 
for flows over two typical shapes of bluff body, i.e. a semicircular projection and 
a normal flat plate. For the purpose of avoiding the computational uncertainties 
a t  the sharp edge of the plate, the normal flat plate is replaced by a thin oblate 
semielliptical projection with major axis normal to the wall. Also, the fluid flow 
is assumed to be steady and incompressible throughout this study. 

2. Parameters to be considered 
A two-dimensional body of height h is located a t  the bottom of a laminar 

boundary layer along a solid surface. The thickness of the boundary layer a t  the 
location of the body is denoted by 6. The velocity profile in the undisturbed 
boundary layer is generally a function of the two co-ordinates x and y, where the 
tax is  is taken along the solid surface in the direction of flow and the y axis normal 
to the surface. However, when the body is sufficiently small, i.e. 

h/S < 1, (1) 
the flow about the obstacle may be described in terms of simply the local velocity 
profile. More exactly, the length scale, say I, on which the wake behind the 
obstacle decays must be much smaller than that, say L, on which the boundary 
layer changes, i.e. 

It is not easy to assess the order of magnitude of IIL in terms of h/S and the 
appropriately defined Reynolds number of the obstacle for the entire range of 
laminar flows. It is evident, however, that (2) will hold if (1)  is satisfied with a 
sufficient margin. Therefore, it may be assumed that with (1) satisfied the develop- 
ment of the boundary layer in the downstream direction may be neglected in 
the formulation of the flow around the obstacle. 

1/L << 1. (2) 
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The problem is now reduced to finding the flow about a body located on a plane 
wall with an approaching flow with velocity profile 

v,, = Uy/h,  vUm = 0, (3) 

where v, and vy are the velocity components in the x and y directions and U is the 
velocity of the approaching flow a t  the top of the obstacle. The suffix 00 refers to 
conditions far upstream of the obstacle. The flow about the obstacle in this 
situation is governed by the following four parameters: the shear velocity u,, the 
height h of the obstacle, the fluid density p and the kinematic viscosity of the 
fluid 1'. The shear velocity is related to U by the equation 

u," = vU/h. (4) 

Therefore, the properties of the flow about the obstacle can be completely 
described by the Reynolds number R, defined by 

R, = Uh/v = (u,h/V)'. ( 5 )  

There exists some knowledge concerning the relation between the height of a 
two-dimensional isolated roughness element and laminar boundary-la yer transi- 
tion. I n  the case of circular wires, the critical height h, which just does not affect 
transition can be represented by u7hl/v = 7,  On the other hand, the minimum 
height h, for which transition occurs a t  the element itself is given by the relation 
(Schlichting 1968, p. 511) u,hZ/v = 15 or 20. I n  the case of cupped cross-sections 
such as a semicircular projection, these values are considerably larger, whereas 
for sharp elements such as a normal flat plate they become smaller. In  any case, 
laminar flow over obstacles may be treated as steady when the Reynolds number 
R, is smaller than a few hundred. There is a practical application in this range 
of the Reynolds number. The height of the sublayer fence which was employed 
by Head & Rechenberg (1962) was h = 0-05mm and the maximum value of 
u,h/i) was 5. In  the experiment of Pate1 (1965), this value was in the range 4-8. 

3. Fundamental equations 

profile of the approaching flow thus becomes in dimensionless form 
It is convenient ho refer all lengths to h and all velocities to  U.  The velocity 

vzm = y, vlia = 0. (6) 

In  an orthogonal curvilinear co-ordinate system (6,~) with corresponding 
velocity components (u, v) as shown in figure 1, the equation of continuity now 

qz = ($)2+($)2 = ($),+($)'. 
This equat,ion is automatically satisfied by introducing the stream function in 
the usual way: 

a@/aq = qu, a$/ag = -p. (9) 
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FIGURE 1. Co-ordinate system. 

Then the scalar vorticity < be can be expressed as 

5 = rr-2[a(qu)lar - %7")/af;I = q-2A97 (10) 

where A is the Laplace operator a21af2 + a2/ar2. By eliminating the pressure terms 
from the Navier-Stokes equations, we have a vorticity transport equation of 
the form 

Since the cases of semicircular and semielliptical projections (hereafter simply 
called the semicircle and the semiellipse) are considered in the present paper, an 
appropriate co-ordinate system will be 

5 = fi(& cos 7, (12a, 6 )  

where i = c (semicircle) or e (semiellipse). In  what follows, the suffix c or e will be 
accompanied by other variables if necessary. fi and gi have the forms 

y = S i ( 0  sin 7, 

fAf) = &(O = e5, (13a) 

( 1 3 6 )  

(14% b)  

.f&) = b, sinh t - 9  q,(f;) = b, Gosh f ;?  

qc = ec, qe = b,(cosh2 f; - sin2 7)*. 

where b, is a positive constant. Then 

The surface of the obstacle corresponds to f ;  = f;,, where 

cot = 0 and gOe = arccosh b;l, 

while the downstream side of the plane wall corresponds to 7 = 0 and the upstream 
side to 7 = n-. The ratio h of the lengths of the major and minor axes of the 
semiellipse is related to f;, by 

h = (tanh[,)-l. (15) 

The vanishing of the velocity on the solid surface requires the following 
boundary conditions : 

q-1 a+pr = 4-1 = 0 at f = f,, ( 1 6 a )  
q-la@/aq = q - l a ~ / a f  = 0 at 7 = 0, ( 1 6 b )  
q-1 at+h/.laq = q-1 @h/af; = 0 at 7 = 7 ~ .  (16c) 
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The other boundary conditions require that the velocity and vorticity a t  infinity 
should be equal to those of the uniform shear flow given by (6) .  In  the numerical 
calculations, however, these conditions must be replaced by conditions a t  a finite 
distance from the obstacle. Here it may be convenient to use asymptotic solutions 
of the Navier-Stokes equations which are valid at  large distances as the boundary 
conditions a t  infinity. This approach was adopted by Takami & Keller (1969) for 
viscous flow past a circular cylinder in a uniform stream by means of the asymp- 
totic solution obtained by Imai (1951). An asymptot,ic solution in this category 
for uniform shear flow was reported by Hunt (1971). Since his solution contains 
a constant which is only approximately related to a component of the couple 
acting on the body, it is not easy to incorporate this solution into the boundary 
conditions a t  infinity. In this connexion it should be mentioned that Okajima, 
Takata & Asanuma (I  97 1) examined the numerical solutions of Takami & Keller 
(1969) and those obtained by assuming that a uniform flow is coming in and 
going out at  the outer boundary with the location of the boundary systematically 
changed. According to their conclusion, these two kinds of solutions will give 
approximately the same results for the flow in the vicinity of the cylinder as long 
as the dist'ance from the cylinder to the outer boundary is more than a hundred 
times the radius of the cylinder. In  view of this fact, therefore, the contour 
corresponding to 6 = trn is chosen as the boundary on which the condition of 
uniform shear flow is to be applied. crn is a positive constant; its value will be 
discussed later. The boundary conditions a t  infinity are now replaced by 

@ = &y2 = &g:(t)sin2y, 5 = 1 a t  ,$ = tm. (17% 6 )  

The curve < = tm is a semicircle of radius exp trnc. for the semicircular projection, 
while for the semielliptical projection it is the semiellipse 

y = bo cosh tm,[l- (x/bo sinh 

which is almost equivalent to a semicircle of radius 4 exp trn,/cosh trne for large 
values of Cm,. 

The pressure distribution over the surface of the obstacle is calculated from 

where C, is the pressure divided by QpU2. The pressure drag coefficient CI)r,, 
which is the pressure drag divided by QpU2h, becomes 

The shear-stress coefficient C,, defined in the same manner, is given by 

C r ( t 0 , ~ )  = - (2 /Rh)  C ( t 0 ,  7) (20) 

on the surface of the obstacle. Thus the viscous drag coeficient C,, becomes 

O?l 
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The total drag coeEcient is 
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c, = c,, i- cBs. 
Similarly, the moment coefficient of the obstacle C,,, which is defined as the 
moment divided by QpU2h2, also consists of two components, i.e. 

CAI = CX, + CXs, (23) 
where C,,, is the part due to the pressure and C,,, is that due to the surface shear 
stress. CA,Ip and C,, can be calculated from 

(24a) 

4. Finite-difference procedure 
Since the Reynolds numbers of interest in the present study are much larger 

than unity, the governing equations (10) and (1 1) with the boundary conditions 
(16) and (1 7) must be solved numerically by means of a finite-difference procedure. 
The nonlinear terms on the left-hand side of (11)  are the main source of the 
numerical instability which has been encountered in the hitherto most widely 
used central difference schemes. Because of this instability, reliable numerical 
solutions of the steady Navier-Stokes equations have been computed by the 
central difference methods, for example, only for Reynolds numbers less than 
about 60 in the case of the flow around a circular cylinder in a uniform stream. 

On the other hand the upwind-differencing scheme, which employs forward or 
downward differencing for the nonlinear terms according to the direction of the 
velocity vector, is known to provide increased calculational stability even in high 
Reynolds number flows. Most of the applications of this method have been to the 
calculation of internal flows, i.e. flows in pipes or in regions enclosed by solid 
boundaries. As far as the authors are aware, external flows which have been 
solved using upwind differencing are limited to the unsteady flow about a 
circular cylinder (Thoman & Szewczyk 1969) and that over a downward-facing 
step (Roache & Mueller 1970). The use of directional differencing as a remedy for 
numerical instability has been criticized because an artificial viscosity introduced 
by the numerical scheme results in only first-order accuracy. Good agreement, 
however, is found between the results of Thoman & Szewczyk and data from 
other numerical studies and experimental observations. Therefore this method 
was chosen in the present study as a compromise between accuracy and computer 
run time. 

We divide the region of flow into rectangular cells with spacings k and 1 
respectively in the 5 and 7 directions. Let the numbers of cells in the 5 and 
7 directions be Nt and N7. Then k = (Em - Eo)/h$ and 1 = n/A\. The values of the 
various functions a t  the grid point {(i - 1) k ,  ( j  - 1 )  I} are identified by ( i , j ) ,  with i 
increasing in the + [ direction and j increasing in the + 7 direction. i and j are 
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integers in the ranges 1 6 i 6 N, + 1 and 1 6 j < N7 + 1. With this notation, the 
finite-difference form of  (1 1)  gives the vorticity CP a t  a grid point P(i , j )  in terms 
of the vorticities and the stream functions at, the neighbouring eight grid points, 
i.e. N(i , j+i) ,  #(i,j-I), E(i+i,j), W ( i - I , j ) ,  N E ( i + l , j + l ) ,  #E(i+l, j- l) ,  
NW(i - l , j+ l )  andXW(i- l , j - l ) ,  as follows (Gosmanetul. 1969): 

where 
CP = CiV + AS CS + E CE + A W7 CW, (35) 

Bi = ui/(ajV + as + aE + arr) (i = N ,  X, E,  IV), 

where i = 1,3, . . . , A$ + 1 a n d j  = 1,2,  . . . , N7 + 1. Similarly the boundary condition 
(1 7) becomes 

$(N5+l,j) = ~{fi(NSk)}2sin2(j-1)l, C(NS+l , j )  = 1,  (28a,b) 

where j = I, is, . . ., N,/ + 1. 
I n  the iterative procedure used to solve (35) and (26), relaxation factors a and /? 

were used to stabilize the computations. They were defined by 

Cp’ = (l-a)$-”+a<y*, $.(;.“ = ( l -p)$g- l )+p+p*,  
where the superscripts (n) and ( n -  1) indicate the values a t  the nth and (n - I)th 
iterations, respectively, and an asterisk indicates the most recently corrected 
value. 

5. Results and discussion 
Numerical solutions for the flow over a semicircle and a semiellipse with 

h = 20 were obtained for 34 different Reynolds numbers, ranging from 0- 1 to 100. 
The distance between the cent’re of the obstacle and the outer boundary a t  which 
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the condition (28) was applied was taken to be a hundred times the height of the 
obstacle throughout the present study. This distance is judged to be appropriate 
in view of the findings of Okajima et al. (1971). Moreover, there are two facts 
supporting the use of a boundary with an even smaller radius than that in the 
case of a circular or elliptical cylinder in a uniform stream. First, the length of the 
rear standing vortices for a semicircle is shorter than that for a circular cylinder 
in a uniform flow when the Reynolds number is more than about 10, as will be 
seen in figure 8. For the purpose of comparing the two cases, the Reynolds number 
R, for a, circular cylinder in a uniform flow is defined in terms of the approaching 
velocity and its radius. Second, Hunt’s analysis (1971) indicates that the pertur- 
bation velocity in the wake far downstream of a body placed a t  the bottom of a 
boundary layer decreases with the distance downstream in proportion to x-1 as 
opposed to x-4 in the case of a cylindrical body in a uniform flow. These two facts 
imply that flow disturbances caused by a body a t  the bottom of a boundary layer 
decrease more rapidly than those caused by a body in a uniform flow. Thus, the 
use of a nearer outer boundary for the former case can be justified. 

The number of grid points N6 x N7 for the semicircle was chosen as 50 x 60, 
100 x 30 or 31 x 30, the third combination being used for Reynolds numbers 
smaller than unity. The calculated results are not very sensitive to the mesh 
size employed. The length of the rear standing vortex a t  R,, = 100, for example, 
is larger by about 34 yo for the case 50 x 60 than for the case of 100 x 30. However, 
the separation and reattachment angles, the drag coefficients and the moment 
coefficients are comparatively insensitive to mesh size and differ by only 10 % 
a t  most. Since the combination 100 x 30 yields rather coarse rectangular cells in 
the 7 direction, the results for the combination 50 x 60 are believed to be more 
accurate. Moreover, the latter combination may be a standard one in the sense 
that a number of calculations of the flow past a circular cylinder in a uniform 
stream have been made in the neighbourhood of this combination. Thus the 
calculations for the semiellipse were performed using this combination for all 
Reynolds numbers. 

The convergence of solutions was checked at every iteration for all the grid 
points and the iterations were terminated when the maximum relative errors of 
the successive iterations became less than lou4. 

Figures 2 (a )  and ( b )  show the streamlines and the equi-vorticity lines of the 
flow fields around the semicircle and the semiellipse for R, = 40. A small standing 
vortex is formed in front of the obstacle. The existence of this vortex was also 
confirmed by the numerical solutions of Mills (1968) for an orifice plate in a 
circular pipe and was experimentally observed by Dumitrescu et ul. ( I  964) for an 
orifice plate in a parallel-sided channel. Figure 3 shows the velocity profiles around 
the semicircle for the case R, = 40. 

Figure 4 shows the maximum vorticity ( < ( ~ O , , y ) l m a .  on the surface of the 
semicircle as a function of the Reynolds number. In  the range R, > 2 ,  the maxi- 
mum vorticity is seen to be proportional to Ri. Therefore, the maximum shear- 
stress coefficient ICT([oc, r)l max is proportional to R,%. I n  this connexion, it may 
be noted that, according to laminar boundary-layer theory (Ting 1960), the 
Torticity in a laminar boundary layer along a body in a uniform shear flow is of 
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FIGURE 2. Streamlines and equi-vorticity lines around ( a )  the semicircular and 
( b )  the semielliptical projection for Rh = 40. Nt = 50, Nq = 60. 
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FIGURE 3. Velocity profiles around the semicircular projection for Rh = 40. Nt = 50, 
N,, = 60. -, v,; ---- , v,; , undisturbed velocity profile. 
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FIGURE 4. Maximum vorticity on the surface of the semicircular projection. 
0,  Nt = 31, ATq = 30; 0, Nt = 50, Nq = 60; ---, gradient = $. 

- 10 
0 30 60 90 120 150 180 10 

6 (deg) 0 (deg) 

FIGURE 5. Distribution of shear stress on the surface of ( a )  the semicircular and 
( b )  the semielliptical projection. Nt = 50, N7 = 60. 

the order of the one-third power of the Reynolds number when the vorticity of 
the shear flow is relatively large. The Reynolds number in this case is defined in 
terms of the vorticity of the shear flow and a representative length of the body. 
This prediction is well confirmed by the numerical results presented in figure 4. 
The distribution of shear stress on the semicircle is shown in figure 5 ( a )  in the 
form RtCT($,, 7) for various Reynolds numbers. For higher Reynolds numbers, 
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FIGURE 6. Definition sketch of standing vortices. S ,  separation point; 
R, reattachment point. 
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FIGURE 7 .  Variation of separation and reattachment angles with Reynolds number. 
0 ,  Ns = 31, N7 = 30, semicircularprojection; @, Ns = 50, N7 = 60, semicircular projection; 
A, ATt = 50, N,, = 60, semielliptical projection; 0, circular cylinder in uniform flow (Hamielec 
& Raal 1969); -, / 3 ~ ;  ----, / 3 ~ .  

R@7&,, 7) is clearly of order unity. Figure 5 ( b )  shows the distribution of shear 
stress on the semiellipse. The steep gradient of the shear stress near the top o f  the 
semiellipse is caused by the large curvature there. In  this case, the maximum 
vorticity does not follow the one-third power law mentioned above. 

The points a t  which the shear stress on the obstacle changes its sign correspond 
to the reattachment or separation points. The definition sketch of the standing 
vortices is given in figure 6. The reattachment angle Pn and the separation angle 
ps thus defined are shown in figure 7 as functions of t he  Reynolds number. 
Figure 8 shows the variation of the lengths Lf and L, of the standing vortices with 
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FIGURE 8. Variation of length of standing vortices with Reynolds number. 0,  N6 = 31, 
Nq = 30, semicircular projection; 0, N - 50, N? = 60, semicircular projection; a, N - 50, 
Nq = 60, semielliptical projection; D, orifice plate in circular pipe (Mills 1968); x , orifice 
plate in parallel-sided channel (Dumitrescu et at. 1964); 0, circular cylinder in uniform flow 
(Hamielec & Raal 1969); -, Lr; ----, Lt. 

6 7  5 -. 

the Reynolds number. I n  these figures, the separation angle and the length of the 
standing vortex for a circular cylinder in a uniform stream of infinite extent are 
shown for reference. 

Standing vortices are found to exist even for a Reynolds number as small as 
0.1. This situation is in contrast to the case of a circular cylinder in a uniform 
stream, in which a standing vortex appears behind the cylinder when R, exceeds 
a value slightly less than 3.5. Although the creeping flow (R,L = 0) was not 
calculated in the present study, we obtained Lfc = 0.29, L,, = 0.30, PRC = 15.6" 
and Psc = 16.0' a t  R, = 0.01 for the semicircle. This strongly suggests that 
standing vortices will exist upstream and downstream of the obstacle even in the 
limit R, -+ 0. I n  fact, Mills (1968) obtained standing vortices for creeping flow 
over a square-edged orifice plate in a circular pipe. Dumitrescu et al. (1964) com- 
puted the two-dimensional version of Mills' case for Reynolds numbers in the 
range 1.60 < R, < 12.8. Figure 2 of their paper, however, shows that the rear 
standing vortex vanishes when R, becomes less than 0.64, which may certainly be 
erroneous. The standing vortices upstream and downstream of the obstacle 
become geometrically similar as the Reynolds number approaches zero, as may 
be seen from figures 7 and 8. This tendency is to be expected, because the solutions 
of the Navier-Stokes equations in the limit of zero Reynolds number yield flow 
patterns which remain unchanged even if the direction of flow is reversed. The 
standing vortices a t  R, = 0 for the semicircle will have Lfc = L,., = 0.295 and 
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FIGURE 9. Pressure distribution on the plane wall upstream of 
the semicircular projection. Nt = 50, N7 = 60. 

pRc = ps, = 15.8", as extrapolated from the data for R, = 0.01. At higher 
Rcynolds numbers, on the other hand, the length of the rear standing vortex can 
be expressed by the formulae 

L,, = 0*50R$61 

Lre= 0.84Rt6' 

(2 < R, < loo), 
(7 < R,& < 100). 

Moreover, the separation angle and the length of the rear standing vortex for the 
semicircle are smaller than those for a circular cylinder in a uniform flow when the 
Reynolds number is more than about 10. 

Figure 9 shows the pressure coefficient computed on the plane wall upstream 
of the semicircle, in which the static pressure on the wall a t  x = - 10 is taken as 
the reference pressure. This choice of the reference pressure was made on the 
basis that the pressures near the outer boundary may be a little inaccurate 
because of the rather coarse mesh sizes there. Since the pressure gradient 
[X',/ax],=, is almost zero a t  x = - 10, there will be a negligible difference, if any, 
between the pressure distribution thus computed and that based on the pressure 
far upstream of the obstacle. The pressure coefficient C,, a t  the front stagnation 
point A (see figure 6) is plotted in figure 10 as it function of the Reynolds number. 
The value of C,, decreases monotonically as R, increases with Cpfc = 0.115 a t  
R, = 40 and C,,, = 0.072 a t  R, = 100, whereas C,, for a body in a uniform flow 
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FIGURE 10. Variation of front and rear stagnation pressures with Reynolds number. 
e, Nc = 31, N,, = 30, semicircular projection; 0, Nt = 50, N7 = 60, semicircular projection; 
A, Nl = 50, N7 = 60, semielliptical projection; -, C p f ;  ----, -c& 

approaches unity as the Reynolds number R, increases. The C,, N R, curves 
strongly suggest that C,, will approach zero as R, tends to infinity. This trend of 
the numerical results is supported by the fact that the stagnation pressure is 
everywhere zero for the inviscid shear flow described by (6), because the viscous 
flow upstream of the obstacle is understood to be approximated by the inviscid 
flow when the Reynolds number becomes very large. At higher Reynolds 
numbers, the value of C,, becomes almost the same for the semicircle and the 
semiellipse, although their shapes are rather different. From this, it may be 
inferred that the C,, N R, curve is little influenced by the shape of the bluff 
obstacle a t  Reynolds numbers higher than 5 or 6. 

The pressure coefficient Cp, a t  the rear stagnation point B (see figure 6) is also 
included in figure 10. I n  contrast to C,,, Cpb seems to approach a value which 
depends on the particular shape of the obstacle. As will physically be expected, 
- Cpb is larger for the semiellipse than for the semicircle. Table 1 compares the value 
of Cpf - C,, for the semicircle with that for a circular cylinder in a uniform stream 
for a few Reynolds numbers. Notice that the former is larger than the latter. 

Figures 1 I (a )  and ( b )  show the pressure coefficients for the semicircle and the 
semiellipse for various Reynolds numbers. At R, = 1 , 4  and 10 in figure 11 (b ) ,  the 
stagnation pressure a t  A is the lowest pressure on the front surface of the semi- 
ellipse. I n  contrast to this situation for the smaller Reynolds numbers, the 
stagnation pressure a t  A for R, = 40 and 100 is the highest pressure on the 
front surface. The oddly different behaviour of the pressure for low and high 
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CD, - C D b  --- 
Semicircular cylinder in 

Circular 

R, or R, projection uniform flow 

1 
10 
20 

100 

7.196 
2.647 
2.338 
1.956 

4.368 
1.798 
1.653 
1.53t 

-f Extrapolated value from the results of Takami & Keller (1969). Other data for the 
circular cylinder in a uniform flow are also from Takami & Keller (1969). 

TABLE 1. Variation of C,, - C,, with Reynolds number 

@ (deg) @ (deg) 

FIGURE 11. Pressure distribution on (a )  the semicircular projection and 
( 6 )  the semielliptical projection. N g  = 50, h',, = 60. 

Reynolds numbers can be explained by the distribution of the equi-vorticity lines 
near the top of the semiellipse. The same behavionr of the pressure was found by 
Riinon (1969) for a thin oblate spheroid in a uniform stream, except that the 
front stagnation pressure approached unity as the Reynolds number increased. 
It is thus clear that this is caused by the large curvature near the top of the 
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Rhv Ra 

FIGURE 12. Variation of drag coefficients with Reynolds number. 0 ,  Ns = 31, N,, = 30, 
semicircular projection; 0, Nt = 50, N,, = 60, semicircular projection; A, Ns = 50, N,, = 60, 
semielliptical projection; 0, circular cylinder in uniform flow (Hamielec & Raal 1969); 
__ c .---- c .--- c 

9 D ,  3 DJ, > Dp. 

semiellipse and is not in itself related to the existence of shear in the approaching 
flow. I n  the case of the semicircle, shown in figure 11 ( a ) ,  however, the pressure 
distribution on the surface is quite different from that on a circular cylinder in a 
uniform flow. The pressure coefficient a t  the front stagnation point A is the 
minimum pressure for all Reynolds numbers considered here for the former, 
while that for the latter is always the maximum pressure on the surface. This 
situation can also be explained by the distribution of the equi-vorticity lines near 
the surface of the semicircle. 

Figure 12 shows the variation of the drag coefficient with the Reynolds 
number. The drag coefficient of a circular cylinder in a uniform flow is also 
included in this figure for reference. Most noteworthy is that the drag 
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Rh 

FIGURE 13. Variation of moment coefficients with Reynolds number. 0 ,  Nt = 31, N,, = 30, 
semicircular projection; 0, Nc = 50, N7 = 60, semicircular projection; A,  Ns = 50, Nq = 60, 
semielliptical projection; -, Chf; ----, Chfs. 

coefficient of a semicircle is always larger than that of a circular cylinder in a 
uniform flow when R, and R, are the same. (Here, the drag coefficient of the 
latter is defined in the usual way as the drag force divided by 4pU2(2h).) This 
fact can be explained by anincrease in the vorticity on the semicircle proportional 
to the surface shear stress owing to the primary vorticity in the approaching 
stream. As shown in (I?,), the magnitude of the pressure on the semicircle is 
governed mainly by the vorticity gradient normal to the surface. The increased 
vorticity on the surface, in this case, leads to an increase in the vorticity gradient 
there. Accordingly, the pressure difference between the front and rear sides of 
the semicircle becomes larger than that for a circular cylinder in a uniform stream 
as has already been shown in table 1 .  The increased pressure difference and 
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surface shear stress yield the larger drag coefficient for the former case. Although 
the drag coefficient of a corresponding elliptical cylinder in a uniform stream is 
not known to the authors, it will certainly be smaller than that of the semiellipse 
considered here. 

The contributions of the pressure and viscous drag coefficients to the total 
drag coefficient are approximately equal for the semicircle at Reynolds numbers 
less than about unity. This is also the case for a circular cylinder in a uniform flow. 
It may be added that the Oseen approximation of the Navier-Stokes equations 
yields exactly the same values of the pressure and viscous drag coefficients for 
this case, as shown by Tomotika & Aoi (1950). A solution in this category for an 
obstacle attached to a plane wall remains to be obtained. 

The variation of the moment coefficient with Reynolds number is shown in 
figure 13. As previously mentioned, the moment coefficient is approximately 
related to the velocity profile in the far wake according to the theory of Hunt 
(1971). It was intended to examine Hunt’s theory by comparing the computed 
velocity profile in the wake with that obtained theoretically. Since the mesh sizes 
become rather coarse in the far wake region, however, velocity profiles accurate 
enough to permit direct comparison with the theory could not be obtained. 

Finally, the variation of the pressure difference Ap between the front and rear 
stagnation points, i.e. A and B in figure 6, with the shear stress T~ = pu: will be 
considered. The relation between Ap and 70 written in the form 

where all symbols denote dimensional quantities, has been used to determine 7,, 

from the measurements of Ap. Here, the functional form of (30) depends on the 
particular shape of the obstacle. Figure 14 shows this relationship for the semi- 
circle and the semiellipse, together with an analytical solution of Dean (1936) and 
the experimental results of Kimura (1974). Dean’s analysis is concerned with 
creeping flow over a normal flat plate attached to a plane wall with an approaching 
velocity profile equivalent to (6). I n  this case, (30) becomes 

h2Ap/(pv2) = 2.90h270/(p~2). 

The computed curve for the semiellipse approximately tends to the straight line 
expressed by (31). 

Kimura’s measurements were performed using a normal fence of thickness 
0.07 mm and span 16 mm placed a t  the bottom of a laminar boundary layer along 
a flat plate. The height of the fence was varied over the range 0.09-0.40mm. 
Accordingly, it may be natural to expect the experimental data to fall in the 
region enclosed by the curves for the semicircle and the semiellipse. Although 
figure 14 shows that this expectation is approximately fulfilled, it should never- 
theless be noted that the experimental data are nearer to the curve for the semi- 
circle than to that for the semiellipse. There are three reasons for this situation. 
First, the shape of the fence is more like a rectangular cylinder rather than the 
semiellipse considered here. Second, it may be pointed out that the pressure holes 
upstream and downstream of the fence were of semicircular shape of radius 
0.3 mm with centres a t  A and B (of figure 6), and are not considered to be small 
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h2 Ap/pv2 

FIGURE 14. Pressure difference between front and rear stagnation points ws. shear stress on 
the plane wall. ----, Nt = 50, Nv = 60, semicircular projection; --, Nt = 50, Nn = 60, 
semielliptical projection; ---, normal flat plate for creeping flow (Dean 1936). Experi- 
ment (Kimura 1974): 0, h/b = 5.7; x , h /b  = 4.7; a, h/b = 3.7; A, h/b = 3.3; 0 ,  h /b  = 2.9; 
b = 0.07mm (thickness of plate), span = 16mm. 

enough compared with the height of the fence. Since the computed pressures on 
the plane wall change considerably in the vicinity of the obstacle, the relatively 
large pressure holes will measure an average pressure difference which is smaller 
than that between the pressures at  the points A and B. Finally, the computations 
were performed for the completely two-dimensional case, whereas in the experi- 
ment the flow over the fence was only approximately two-dimensional. These 
three effects will yield a smaller pressure difference compared with the case where 
these were absent, if the value of r,, is the same. As shown in figure 14, the relation 
between the experimental data and the computed Ap N r,, curve for the semi- 
ellipse confirms this tendency. 

6. Conclusions 
In  the present study, numerical solutions have been obtained for viscous flow 

over two-dimensional obstacles of typical shapes, i.e. semicircular and semi- 
elliptical projections attached to a plane wall along which a laminar boundary 
layer has developed. Since the major axis of the semiellipse was taken to be 
twenty times as long as the minor axis and normal to the wall, the flow over the 
semiellipse approximately corresponded to that over a normal flat plate attached 
to the wall. It was assumed that the height of the obstacle was so small in com- 
parison with the local boundary-layer thickness that the approaching flow could 
be approximated by a uniform shear flow. Numerical solutions in the range of 
Reynolds numbers 0.1 Q Rh B 100 (Rh being defined in terms of the approaching 
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velocity at the top of the obstacle and its height h) were obtained by applying an 
upwind differencing scheme for the nonlinear terms of the vorticity transport 
equation. 

The main results which have been obtained from this investigation are as 
follows. 

(i) Standing vortices are formed both in front of and a t  the rear of the obstacle 
for all Reynolds numbers considered here. There is almost no doubt that these 
vortices will exist in the limit of zero Reynolds number. The length of the rear 
standing vortex can approximately be expressed as 0-5hRt6' for the semicircle in 
the range 3 < Rh < 100 and as 0.84hRK60 for the semiellipse in the range 

(ii) The pressure coefficient a t  one of the front stagnation points (point A in 
figure 6) approaches zero as the Reynolds number increases. For Reynolds 
numbers higher than about 10, the variation of the pressure coefficient with 
Reynolds number is rather insensitive to the particular shape of the obstacle. 

(iii) The drag coefficient of the semicircle is larger than that of a circular 
cylinder in a uniform stream of infinite extent, for the same Reynolds number. 
Here the Reynolds number for a cylinder is defined in terms of the approaching 
velocity and its radius. This fact can be interpreted as an increase in the vorticity 
on the semicircle which is caused by the primary vorticity in the approaching 
shear flow. 

(iv) The variation of the computed pressure difference between the front and 
rear stagnation points (points A and B in figure 6) with the undisturbed wall 
shear stress compares well with the analytical result for creeping flow in the 
range of smaller Reynolds numbers and with an experimental result in the range 
of higher Reynolds numbers. 

(v) The maximum vorticity on the semicircle is proportional to Ri for Reynolds 
numbers higher than about 4 .  This fact is consistent with the prediction of 
laminar boundary-layer theory for two-dimensional bodies in a uniform shear 
flow. 

7 < Rh < 100. 
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